nitrene¹⁰ but instead undergo photochemical H atom abstraction to give radical pairs, which eventually collapse to form covalent adducts in high yields upon warming the matrix.

Acknowledgment. We gratefuly acknowledge the assistance of David Chang of The Ohio State University Campus Chemical Instrument Center with GC-MS analyses.

(10) Leyva, E.; Platz, M. S.; Persy, G.; Wirz, J. J. Am. Chem. Soc. 1986, 108, 3783.

Formation of a Heterometallic Carbon Dioxide Complex with Concurrent Reduction of CO₂

Eric G. Lundquist, John C. Huffman, and Kenneth G. Caulton*

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 47405 Received September 8, 1986

Recently, we have pursued the objective of the synthesis of heterobimetallic polyhydride complexes¹⁻⁵ in the hope that these complexes would activate and reduce dipolar substrates such as CO and CO_2 . Our strategy in making these complexes has been either to combine early and late transition metals or to make a complex where one of the metal centers is unsaturated or can easily dissociate a ligand (e.g., 1,5-cyclooctadiene (COD), solvent, hy-drogen) to become unsaturated. This latter strategy motivated our recent synthesis of (1,5-COD)RhH₃Os(PMe₂Ph)₃.^{6,7} Here, we report the reaction of (1,5-COD)RhH₃Os(PMe₂Ph)₃ with CO₂ resulting in the retention of the cyclooctadiene and the formation of the first heterometallic carbon dioxide complex formed from CO₂ itself.⁸

A dark red THF solution of 0.23 mmol of (COD)RhH₃OsP₃ $(P = PMe_2Ph)$ reacts completely with CO₂ (1 atm, 4 mmol, 25 °C) within 8 h to give a yellow solution. The ¹H and ³¹P NMR spectra of the products establish the formation of cis, mer-H₂Os(CO)P₃,⁹ along with one other product. Extraction with pentane removes H2Os(CO)P3 and leaves a yellow powder which can be recrystallized by slow evaporation from acetone to afford yellow-orange crystals (38% isolated yield). The ³¹P and ¹H NMR spectra of this material¹⁰ are consistent with a product containing two hydrides, one mer-OsP₃ unit and two Rh(COD) units. Selective heteronuclear spin decoupling studies show each hydride

(1) Lemmen, T. H.; Huffman, J. C.; Caulton, K. G. Angew. Chem., Intl. Ed. Engl. 1986, 25, 262.

(2) Geerts, R. L.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1986, 25, 590

(3) Rhodes, L. F.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. **1985**, 107, 1759 and references therein. (4) Bruno, J. W.; Huffman, J. C.; Green, M. A.; Caulton, K. G. J. Am.

Chem. Soc. 1984, 106, 8310.

(5) Skupinski, W. A.; Huffman, J. C.; Bruno, J. W.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 8128.

(6) Lundquist, E. G.; Caulton, K. G., submitted for publication in Inorg. Synth.

Synth. (7) (1,5-COD)RhH₃Os(PMe₂Ph)₃ synthesized by the reaction of K-[OsH₃(PMe₂Ph)₃] with [RhCl(COD)]₂ in THF. ¹H NMR (360 MHz, C₆D₆): δ -9.15 (m, 3 H) 1.53 (d, J_{Me-P} = 7 Hz, 6 H), 1.78 (m, COD CH₂, 4 H) 2.40 (m, COD CH₂, 4 H), 4.85 (br s, COD vinyl, 4 H), 7.10-7.70 (m, P-Ph). ³¹P[¹H] NMR (40.5 MHz, C₆D₆): -20.6 ppm (d, J_{P-Rh} = 8.5 Hz). (8) An Ir/Os/CO₂ complex has been made by oxidation of CO bound to iridium with OsO₄. See: Audett, J. D.; Collins, T. J.; Santarsiero, B. D.; Spies, G. H. J. Am. Chem. Soc. **1982**, 104, 7352. (9) Bell, B.; Chatt, J.; Leigh, J. G. J. Chem. Soc., Dalton Trans. **1973**, 997. ³¹P(¹H) NMR (C₆D₆): -29.0 (d, J_{P-P} = 16 Hz, 2 P), -37.0 ppm (t, J_{P-P} = 16 Hz, 1 P).

³¹P(¹H) NMR (C₆D₆): -29.0 (d, $J_{p-p} = 16$ Hz, 2 P), -37.0 ppm (t, $J_{p-p} = 16$ Hz, 1 P). (10) ¹H NMR (360 MHz, C₆D₆); δ -16.80 (m, 2 H); complete ³¹P decoupling gives a doublet with $J_{H-Rh} = 24$ Hz, selectively coupling to the unique phosphorus gives $J_{H-P} = 11$ Hz, selectively coupling to the two equivalent phosphorus ligands gives $J_{H-P} = 7$ Hz; 1.05 (d, $J_{Me-P} = 6$ Hz, 6 H), 1.55 (m, COD, 4 H), 1.65 (m, COD, 4 H), 2.12 (virtual triplet, $J_{Me-P} = 2$ Hz, 12 H), 2.30 (m, COD, 8 H), 4.00 (br s, vinyl COD, 4 H), 4.55 (br s, vinyl COD, 4 H), 7.0–8.1 (m, Ph–P, 15 H). ³¹P(¹H) NMR (146 MHz, C₆D₆): -36.5 (d, $J_{p-p} = 22$ Hz, 2 P), -39.5 (t, $J_{p-p} = 22$ Hz, 1 P).

Figure 1. ORTEP drawing of the inner coordination sphere of (COD)₂Rh₂OsH₂CO₂(PMe₂Ph)₃. The hydrides are shown in the positions determined by molecular mechanics calculations. Selected bond distances: Os(1)-Rh (2) 2.9679 (20), Os(1)-Rh(3) 2.9880 (21), Os-(1)-C(32) 2.062 (19), Rh(2)-O(31) 2.062 (13), Rh(3)-O(33) 2.065 (12), $\hat{C}(32)-O(31)$ 1.300 (21), $\hat{C}(32)-O(33)$ 1.309 (22) Å. Angles: Rh(2)-Os(1)-Rh(3) 125.11 (6)°, P(4)-Os(1)-C(32) 178.0 (5)°, Os-(1)-C(32)-O(31) 121.6 $(14)^{\circ}$, Os(1)-C(32)-O(33) 122.1 $(13)^{\circ}$, O-(31)-C(32)-O(33) 116.3 (16)°.

to couple to one rhodium, with J(H-Rh) = 24 Hz. An X-ray structure determination¹¹ (Figure 1) reveals a three-metal system with a planar PRh₂OsCO₂ unit. While the hydride ligands were not located in final electron density maps, molecular mechanics calculations¹² reveal the lowest energy sites for two hydrides to be bridging the two Rh–Os vectors.¹³ The C/O distances are longer than those in ketones, and the Os/C distance (2.062 (19) Å) is shorter than that (2.22 (2) Å) to an sp³ carbon,¹⁴ thus favoring a blend of the following electronic structures:

The Rh/Os distances in (COD)₂Rh₂OsH₂CO₂(PMe₂Ph)₃ nearly duplicate that of a hydride-bridged Rh/Ru bond in RuRhHPh-(PhPCH₂PPh₂)(Ph₂PCH₂PPh₂)(COD) (2.9413 (8) Å).¹⁵

On the basis of integration of the ¹H NMR spectrum of the products upon complete consumption of (COD)RhH₃OsP₃, we propose the following stoichiometry for the reaction described here:

$$2(COD)RhH_3OsP_3 + 2CO_2 \rightarrow (COD)_2Rh_2OsP_3H_2CO_2 + H_2Os(CO)P_3 + H_2O$$

Carrying out the reaction using ¹³CO₂ yields H₂Os(¹³CO)P₃,¹⁶ establishing CO₂ as the source of the carbonyl ligand and thus demonstrating that the reaction effects a net deoxygenation of CO₂. The ¹³C NMR of (COD)₂Rh₂OsH₂¹³CO₂P₃ also produced in this reaction shows the bound ${}^{13}CO_2$ as a doublet of triplets at 193 ppm.¹⁷ This chemical shift falls close to the 195–210-ppm region found for all CO₂ complexes studied by ¹³C NMR to date.¹⁸ The coupling constants reveal stronger coupling (64 Hz) to the trans phosphorus than to those that are cis (11 Hz). The infrared C/O stretching vibrations (Nujol mull) of (COD)₂Rh₂OsH₂CO₂P₃ (1365 and 1260 cm⁻¹) were assigned, on the basis of their shift

(12) Program XHYDEX. See: Orpen, A. G. J. Chem. Soc., Dalton Trans. 1980, 2509.

(13) Terminal hydrides on osmium would be inconsistent with the large

(13) Terminal hydrides on osmium would be inconsistent with the large observed Rh-H coupling. (14) Motyl, K. M.; Norton, J. R.; Schauer, C. K.; Andersen, O. P. J. Am. Chem. Soc. 1982, 104, 7325. (15) Delavaux, B.; Chaudret, B.; Devillers, J.; Dahan, F.; Commerges, G.; Poilblanc, R. J. Am. Chem. Soc. 1986, 108, 3703. (16) $^{13}Cl^{1}H$ NMR (C_6D_6): 191 ppm (d of t, $J_{CO-P} = J_{CO-P'} = 8$ Hz). (17) $^{13}Cl^{1}H$ NMR of [CODRh]₂ ($^{13}CO_2$)H₂Os(PMe₂Ph)₃ (74 MHz, C_6D_6): 193 (d of t, $J_{C-P trans} = 64, J_{C-P cus} = 11$ Hz). 130 (m, Ph-P), 87 (d, $J_{C-Rh} = 13$ Hz), 71 (d, COD, $J_{C-Rh} = 13$ Hz), 33 (s, COD), 30 (s, COD), 29 (t, $J_{M-P} = 10$ Hz), 23 ppm (d, $J_{Me-P} = 10$ Hz). (18) Alvarez, R.; Carmona, E.; Marin, J. M.; Poveda, M. L.; Gutierrez-Puebla, E.; Monye, A. J. Am. Chem. Soc. 1986, 108, 2286. Note Added in Proof: Following submission of our manuscript, Tso and Cutler have revealed conversion of a CO-derived ReCO₂H fragment to a μ -CH₂O moiety by re-duction with hydride bound to oxophilic Zr(IV): Tso, C. T.; Cutler, A. R. duction with hydride bound to oxophilic Zr(IV): Tso, C. T.; Cutler, A. R. J. Am. Chem. Soc. 1986, 108, 6069.

0002-7863/86/1508-8309\$01.50/0 © 1986 American Chemical Society

⁽¹¹⁾ Crystallographic data (-155 °C): a = 10.338 (4) Å, b = 23.184 (11) Å, c = 19.943 (8) Å, $\beta = 123.20$ (1)°, and Z = 4 in space group $P2_1/c$. R = 0.0489 for 2746 reflections with $F > 2.33\sigma(F)$, using a model with fixed (d(C-H) = 0.95 Å) hydrogens on carbon and anisotropic thermal parameters on metals and phosphorus.

to 1332 and 1225 cm⁻¹ in the ¹³C analogue. These values support the conclusion of considerable single-bond character in the C/O bonds.

 $(COD)_2Rh_2OsP_3H_2CO_2$ is the unique example of a neutral compound containing hydride as well as CO₂ ligands. We are, therefore, working to establish conditions that promote the formation of C-H bonds (e.g., formate or the gem-diolate I) or indeed the net scission of C/O bonds.

Acknowledgment. Professor Michele Aresta contributed a remarkably stimulating environment for our contemplation of the results reported here. We thank the National Science Foundation (CHE 83-05281) for financial support and Johnson Matthey, Inc., for material support. Teresa Wright-Kester and Scott Horn are thanked for skilled technical assistance. Drs. A. G. Orpen and D. Ho and Professor A. Albinati provided valuable help with the molecular mechanics calculations.

Supplementary Material Available: Table of atomic positional and thermal parameters for (COD)₂Rh₂OsH₂CO₂(PMe₂Ph)₃ (1 page). Ordering information is given on any current masthead page.

Synthesis and Structure of the First Molybdenum-Pterin Complex

Sharon J. N. Burgmayer and Edward I. Stiefel*

Corporate Research Science Laboratories Exxon Research and Engineering Company Clinton Township, Annandale, New Jersey 08801 Received February 7, 1986

Pterin derivatives have been found in an increasing number of enzymes.¹⁻³ In a significant number of cases, a metal-pterin complex is present. For example, Mo-co, the molybdenum cofactor contained in at least 10 distinct enzymes, has a 6-substituted sulfur-containing pterin associated with Mo.² In phenylalanine hydroxylase, biopterin (a 6-substituted tetrahydropterin) is directly associated with Fe.³ Despite the presence of metal pterin units in these enzymes, there is no extant report and no structural information yet available about any isolated metal pterin complex. Although several reports are available concerning metal coordination by the related molecules, lumazine and flavin,⁴ this paper reports the first characterization and structure determination for a metal-pterin complex.

University of Amsterdam, 1983.
(3) (a) Dix, T. A.; Bollag, G. E.; Domanico, P. L.; Benkovic, S. J. Biochemistry 1985, 24, 2955. (b) Wallick, D. E.; Bloom, L. M.; Gaffney, B. J.; Benkovic, S. J. Biochemistry 1984, 23, 1295.
(4) (a) Goodgame, M.; Schmidt, M. A. Inorg. Chem. Acta 1979, 36, 151.
(b) Selbin, J.; Sherrill, J.; Bigger, C. H. Inorg. Chem. 1974, 13, 2544. (c) Sawyer, D. T.; Doub, W. H. Inorg. Chem. 1975, 14, 1736. (d) Wade, T. D.; Fritchie, C. J. J. Biol. Chem. 1973, 248, 2337. (e) Clarke, M. J.; Dowling, M. G.; Garafalo, A. R.; Brennan, T. F. J. Biol. Chem. 1980, 255, 3472. (f) Yu, M. W.; Fritchie, C. J. J. Biol. Chem. 1975, 250, 946. (g) Garland, W. T.; Fritchie, C. I. J. Biol. Chem. 1974, 249, 2228. T.; Fritchie, C. J. J. Biol. Chem. 1974, 249, 2228.

View of $Mo_2O_5(O_2N_5C_6H_3)_2^{2-}$ showing atomic labeling Figure 1. scheme. The atomic numbering scheme of both xanthopterinate ligands is identical. The second xanthopterinate ligand (unlabeled for pictorial clarity) has subscript b in the atomic labels. Thermal ellipsoids drawn at 50% probability. Atom H_{b1} is hidden from view.

$[Mo_2O_5(O_2N_5C_6H_3)_2]^{2-} Anion in Crystalline$ $[N_2((CH_3),SO_3)_1][Mo_2O_2(O_2N_5C_3H_3)_1]$	Table I.	Selected	Bond	Lengths	and	Angles	Involving	the
$[N_{2}((CH_{1}),SO),1,[M_{2},O_{1}(O,N_{1}C_{1}H_{1}),1]$	[Mo ₂ O ₅ (O2N5C6H	$[I_3)_2]^{2-}$	Anion ir	Cr	ystalline	-	
	[Na((CF	$(1_3)_2 SO)_2$	2[Mo2	$O_5(O_2N_2)$,C₄H	[₃) ₂]		

		55/23						
Bond Lengths, Å								
Mo _a -O _b	1.883 (6)	Mo _b -O _b	1.884 (6)					
Mo _a -O _{a1}	1.691 (7)	Mob-Ob1	1.710 (6)					
Moa-Oa2	1.707 (5)	Mob-Ob2	1.684 (7)					
Mo _a -O _{a3}	2.084 (5)	Mob-Ob3	2.081 (5)					
Mo _a -N _{a5}	2.324 (6)	Mob-Nb5	2.324 (6)					
Mo _a -O _{b4}	2.252 (6)	Mob-Oa4	2.246 (6)					
Moa∙∙Mob	3.604 (1)	• •	• •					
Bond Angles, deg								
O _b Mo _a O _{a1}	99.6 (3)	O _b Mo _b O _{b1}	104.9 (3)					
OhMo Oa2	104.2 (3)	$O_b M o_b O_{b2}$	99.4 (3)					
ObMooO3	155.5 (2)	O _b Mo _b O _{b3}	155.3 (2)					
O _b Mo _a N _{a5}	84.7 (2)	O _b Mo _b N _{b5}	84.3 (2)					
ObMoaOb4	84.9 (2)	O _b Mo _b O _{a4}	84.8 (2)					
Oa1MoaOa2	105.1 (3)	O _{b1} Mo _b O _{b2}	105.3 (3)					
Oa1MoaOa3	93.5 (3)	O _{b1} Mo _b O _{b3}	91.4 (2)					
Oa1MoaNas	92.2 (3)	O _{b1} Mo _b N _{b5}	158.3 (3)					
Oa1MoaOb4	167.5 (3)	O _{b1} Mo _b O _{a4}	84.6 (3)					
Oa2MoaOa3	92.1 (2)	O _{b2} Mo _b O _{b3}	93.8 (3)					
Oa2MoaNa5	158.6 (3)	Ob2MobNb5	92.3 (3)					
Oa2MoaOb4	84.9 (3)	Ob2MobOa4	167.6 (3)					
Oa3MoaNa5	74.1 (2)	Ob3MobNP2	74.4 (2)					
Oa3MoaOb4	78.4 (2)	Ob3MobOa4	78.3 (2)					

Xanthopterin, 2-amino-4,6-dioxopteridine, is a yellow pigment first isolated from butterfly wings ("xanthos" and "pterin" are Greek for yellow and wing, respectively).⁵ Under appropriate conditions,⁶ xanthopterin reacts with molybdate to form the di-

(5) Pfleiderer, W. In Biochemical and Clinical Aspects of Pteridines; Wachter, H., Curtius, H. Ch., Pfleiderer, W., Eds.; DeGruyter: Berlin, 1982. (6) (a) Xanthopterin hydrate (Aldrich) (0.397 g, 2.00 mmol), Na₂Mo-O₄·2H₂O (0.242 g, 1.00 mmol), and (NH₄)₆Mo₇O₂₄·4H₂O (0.176 g, 0.143 mmol) were charged into a 100-mL Schlenk flask. Dimethyl sulfoxide, Ma SO (5 O mL) was deded and the mixture une decorrect decorrect decorrect for many surface. Me₂SO (50 mL), was added and the mixture was deaerated by multiple purges with argon on the vacuum manifold. Complete dissolution occurred when the mixture was heated to 80 °C. After stirring for 50 min between 85 and 90 °C, the yellow-orange solution was cooled. All Me₂SO was removed by distillation in vacuo. The resulting oil was redissolved in dry, deaerated dmf (20 mL) and the product was precipitated by addition of anhydrous deaerated (20 mL) and the product was precipitated by addition of anhydrous dearated diethyl ether. The yellow-orange microcrystalline solid was isolated by filtration to give 94% yield of $[Na(dmf)_2]_2Mo_2O_3(xanth)_2$. Satisfactory analysis was obtained for $C_{24}H_{34}N_{14}O_{13}Na_2Mo_2$ (C, H, N, Na, Mo). ¹H NMR (Me₂SO-d₆, in ppm downfield from TMS): δ 2.71, 2.87 (s, 12 H, CH₃ of DMF); 6.19 (s br, 2 H, -NH₂ of xanthopterinate); 7.84 (s, 1 H, H7 of xanthopterinate); 7.93 (s, 2 H, dmf). ¹³C NMR (Me₂SO-d₆, in ppm from TMS): δ 30.8, 35.8, 162.5 (s, dmf resonances); 116.7, 149.2, 160.2, 161, 150.6, 172.5 (s, xanthopterinate resonances). [Na(dmf)_2]_2Mo_2O_3(xanth)_2 has one irreversible reduction at -1 295 V vs. Ag/ApCl in 0 1 M UTBALIPE.IDMF irreversible reduction at -1.295 V vs. Ag/AgCl in 0.1 M [TBA][PF₆]DMF. (b) $[TEA]_2Mo_2O_3(xanth)_2$ can be prepared by following the above procedure but substituting TEA_2MoO_4 for $Na_2MoO_4.2H_2O$. ¹H NMR (Me₂SO-*d*₆): δ 1.18, (t, 12 H, CH₃ of TEA); 3.22 (q, 18 H, CH₂ of TEA), 6.10 (s, 2 H NH₂ of xanthopterinate); 7.77 (s, 1 H, N7 of xanthopterinate).

0002-7863/86/1508-8310\$01.50/0 © 1986 American Chemical Society

 ⁽a) Benkovic, S. J. Annu. Rev. Biochem. 1980, 49, 227. (b) Van Beelen, P.; VanNeck, J. W.; de Cock, R. M.; Vogels, G. D.; Guigt, W.; Haasnoot, C. A. G. Biochemistry 1984, 23, 4448.
 (2) (a) Burgmayer, S. J. N.; Stiefel, E. I. Chem. Educ. 1985, 62, 943.
 (b) Molybdenum and Molybdenum Containing Enzymes; Coughlan, M. P. J. Education of the Content of the Cont

⁽b) Molybdenum and Molybdenum Containing Enzymes; Coughlan, M. P., Ed.; Pergamon Press: New York, 1980. (c) Cramer, S. P.; Stiefel, E. I. In Molybdenum Enzymes; Spiro, T., Ed.; Wiley: New York, 1985; p 411. (d) Johnson, J. L.; Hainline, B. E.; Rajagopalan, K. V. J. Biol. Chem. 1980, 255, 1783. (e) Johnson, J. L.; Hainline, B. E.; Rajagopalan, K. V.; Arison, B. H. J. Biol. Chem. 1984, 259, 5414. (f) Claassen, V. P. Ph.D. Dissertation, University of Amsterdam, 1983.
(a) (a) Dix T. A: Pollage G. E: Domanico P. L: Benkovic, S. L. Bio.